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Lead halide perovskites exhibit excellent photovoltaic properties and over the past years have 
revolutionized the field of solution processed photovoltaics, achieving record power conversion 
efficiencies (PCE) of above 25.5% [1]. Yet, due to concerns raised regarding the presence of the non-
environmentally friendly Pb-atoms, the quest for stable non-toxic materials with high photo-conversion 
efficiency remains an active topic of research. In 2017, silver bismuth halides with an AaBbXx (x = 
a+3b) lattice [2], were shown to be highly stable and promising candidate materials for solar cell 
applications. These compounds, also called rudorffites, exhibit optical band gaps ranging between 1.4 
eV to 2.0 eV [3], impressive high short-circuit current [4,5] and have achieved PCE of up to 5.6% [6]. 
Contrary to perovskites, these materials exhibit edge-shared AX6 and BX6 octahedra hence breaking 
the paradigm of corner-sharing structures for good opto-electronic properties. Furthermore, these 
materials have an ease of processing and can be synthesized by spin-coating techniques [7], thermal co-
evaporation [8], as well as through solution atomization to produce aerosols [9]. The compounds can 
be defined as a joint population between three types of sites: vacant-sites ∆, monovalent and trivalent 
cation sites, which each of these can exhibit different occupancy depending on the relative 
monovalent/trivalent atom ratio [5]. This mixture of atomic sites with variant occupancies, make 
rudorffites particularly difficult to model. In fact, to-date a systematic investigation of their structural, 
electronic and optical properties is missing. In this work, we thoroughly analyse the symmetry of the 
rudorffites structures and employ state-of-the-art calculations from first-principles to unveil their 
electronic and optical properties. We highlight the full class of materials, and focus on the previously 
synthesised Ag3BiI6, AgBiI4 and AgBi2I7 [5]. We begin with AgBiI4, which corresponds to a 50% Ag/Bi 
ratio, and use the symmetry groups associated with this material (i.e., R3m, C2/m and Fd3m) to show 
that it is a necessary requirement to model the materials in subgroups of these in order accurately 
describe the lattices. To do so, we use the so-called Wyckoff splitting method, which allow us to unveil 
the fine details of the electronic band structure of the material, and accurately compute its electronic 
band-gap. Having established a computational model to look at these compounds, we move on, to 
examine the case of Ag-rich compounds by looking at Ag3BiI6. We report a dramatic improvement in 
the absorption spectra of the material, and explain this improvement by analysing the atomic orbital 
associated with the photo-active transitions. Overall, we explore the rudorffite materials phase-space 
and propose the key atomic-scale parameters that can allow tuning and optimizing the opto-electronic 
properties of these compounds that are critical for their photovoltaic applications. 
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