New $CIGS_n$ lamellar materials for photovoltaics applications

Amal BELHCEN¹, Maria Teresa CALDES¹, Nicolas BARREAU¹, Catherine GUILLOT-DEUDON¹, Eric GAUTRON¹, Ludovic ARZEL¹, Adele RENAUD², Stephane JOBIC¹

1- IMN, The Institute of Materials Jean Rouxel of Nantes.2- ISCR, Rennes Institute of Chemical Sciences.

Recently, our research group has identified new CIGS_n lamellar phases in the Cu_2S -In₂S₃-Ga₂S₃ system [1]. CIGS₄ ($Cu_{0.32}In_{1.74}Ga_{0.84}S_4$), CIGS₅ ($Cu_{0.65}In_{1.75}Ga_{1.4}S_5$) and CIGS₆ ($Cu_{1.44}In_{2.77}Ga_{0.76}S_6$) are interesting compounds looking to their optical gaps (see Figure 1) that can be comparable to those of the chalcopyrite $CuIn_{0.7}Ga_{0.3}S_2$, studied as potential absorber in a tandem solar cell and well represented in the emerging thin-film photovoltaic [2]. As it is shown in Figure 2 these materials present a 2D structure with generic compositions ($M_{(Td)}$) $_{n-2}(In_{(Oh)})$ S_n (M = Cu, In, Ga), with cations in tetrahedral (Td) and octahedral (Oh) sulphur environments. All compounds exhibit a van der Waals gap (~3.75 Å). We present in this work, the further study of these new materials in order to identify their potential for photovoltaic applications, by assembling a laboratory thin-film photovoltaic cell.

The synthesis of thin films was carried out by vacuum co-evaporation technique from elementary sources. Figure 3 shows an HAADF-STEM image of the scratched powder from a prepared thin film presented on the bottom of the figure. The measured distance between the octahedral In-S layers (observed as brighter lines) as well as chemical composition analysed by EDX, confirm that a $CIGS_5$ lamellar phase has been successfully deposited.

In order to optimise the heterojunction offsets, the flat band potentials of $CIGS_n$ compounds were measured, as a first step on bulk samples. Results were compared to that of the chalcopyrite $CuIn_{0.7}Ga_{0.3}S_2$ which was estimated around -5.3 eV.

A first SLG/Mo/CIGS $_5$ /ZnOS/ZnO/ZnO:Al solar cell was formed without any interface optimization. The following photovoltaic parameters were obtained: $V_{oc} = 400$ mv and $J_{SC} = 0.4$ mA/cm 2 . This first attempt shows there is still a serious need to optimize interfaces. Moreover, PL measurements are also in progress in order to better understand the absorber behaviour.

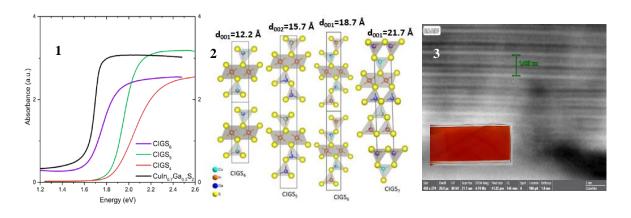


Figure: 1) Kubelka-Munk transformed reflectance spectra of $CIGS_n$ and $CuIn_{0.7}Ga_{0.3}S_2$ compounds. 2) $CIGS_n$ structure types. 3) HAADF-STEM image of $CIGS_5$ thin film.

^[1] Caldes, M., Guillot-Deudon, C., Thomere, A., Penicaud, M., Gautron, E., Boullay, P., Bujoli-Doeuff, M., Barreau, N., Jobic, S. and Lafond, A., 2020. Layered Quaternary Compounds in the Cu2S-In2S3-Ga2S3 system. *Inorganic Chemistry*, 59(7), pp.4546-4553.

^[2] Thomere, A., Guillot-Deudon, C., Caldes, M., Bodeux, R., Barreau, N., Jobic, S. and Lafond, A., 2018. Chemical crystallographic investigation on Cu2S-In2S3-Ga2S3 ternary system. *Thin Solid Films*, 665, pp.46-50.